Papers
Topics
Authors
Recent
2000 character limit reached

Smooth function approximation by deep neural networks with general activation functions (1906.06903v2)

Published 17 Jun 2019 in stat.ML and cs.LG

Abstract: There has been a growing interest in expressivity of deep neural networks. However, most of the existing work about this topic focuses only on the specific activation function such as ReLU or sigmoid. In this paper, we investigate the approximation ability of deep neural networks with a broad class of activation functions. This class of activation functions includes most of frequently used activation functions. We derive the required depth, width and sparsity of a deep neural network to approximate any H\"older smooth function upto a given approximation error for the large class of activation functions. Based on our approximation error analysis, we derive the minimax optimality of the deep neural network estimators with the general activation functions in both regression and classification problems.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.