Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spatio-Temporal Fusion Networks for Action Recognition (1906.06822v1)

Published 17 Jun 2019 in cs.CV

Abstract: The video based CNN works have focused on effective ways to fuse appearance and motion networks, but they typically lack utilizing temporal information over video frames. In this work, we present a novel spatio-temporal fusion network (STFN) that integrates temporal dynamics of appearance and motion information from entire videos. The captured temporal dynamic information is then aggregated for a better video level representation and learned via end-to-end training. The spatio-temporal fusion network consists of two set of Residual Inception blocks that extract temporal dynamics and a fusion connection for appearance and motion features. The benefits of STFN are: (a) it captures local and global temporal dynamics of complementary data to learn video-wide information; and (b) it is applicable to any network for video classification to boost performance. We explore a variety of design choices for STFN and verify how the network performance is varied with the ablation studies. We perform experiments on two challenging human activity datasets, UCF101 and HMDB51, and achieve the state-of-the-art results with the best network.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.