Papers
Topics
Authors
Recent
2000 character limit reached

Global Convergence of Least Squares EM for Demixing Two Log-Concave Densities (1906.06776v2)

Published 16 Jun 2019 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: This work studies the location estimation problem for a mixture of two rotation invariant log-concave densities. We demonstrate that Least Squares EM, a variant of the EM algorithm, converges to the true location parameter from a randomly initialized point. We establish the explicit convergence rates and sample complexity bounds, revealing their dependence on the signal-to-noise ratio and the tail property of the log-concave distribution. Moreover, we show that this global convergence property is robust under model mis-specification. Our analysis generalizes previous techniques for proving the convergence results for Gaussian mixtures. In particular, we make use of an angle-decreasing property for establishing global convergence of Least Squares EM beyond Gaussian settings, as $\ell_2$ distance contraction no longer holds globally for general log-concave mixtures.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.