Emergent Mind

Parametric Resynthesis with neural vocoders

(1906.06762)
Published Jun 16, 2019 in cs.SD , cs.LG , and eess.AS

Abstract

Noise suppression systems generally produce output speech with compromised quality. We propose to utilize the high quality speech generation capability of neural vocoders for noise suppression. We use a neural network to predict clean mel-spectrogram features from noisy speech and then compare two neural vocoders, WaveNet and WaveGlow, for synthesizing clean speech from the predicted mel spectrogram. Both WaveNet and WaveGlow achieve better subjective and objective quality scores than the source separation model Chimera++. Further, WaveNet and WaveGlow also achieve significantly better subjective quality ratings than the oracle Wiener mask. Moreover, we observe that between WaveNet and WaveGlow, WaveNet achieves the best subjective quality scores, although at the cost of much slower waveform generation.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.