Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Comparison of Diverse Decoding Methods from Conditional Language Models (1906.06362v1)

Published 14 Jun 2019 in cs.CL

Abstract: While conditional LLMs have greatly improved in their ability to output high-quality natural language, many NLP applications benefit from being able to generate a diverse set of candidate sequences. Diverse decoding strategies aim to, within a given-sized candidate list, cover as much of the space of high-quality outputs as possible, leading to improvements for tasks that re-rank and combine candidate outputs. Standard decoding methods, such as beam search, optimize for generating high likelihood sequences rather than diverse ones, though recent work has focused on increasing diversity in these methods. In this work, we perform an extensive survey of decoding-time strategies for generating diverse outputs from conditional LLMs. We also show how diversity can be improved without sacrificing quality by over-sampling additional candidates, then filtering to the desired number.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.