Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Data-Driven Machine Learning Techniques for Self-healing in Cellular Wireless Networks: Challenges and Solutions (1906.06357v1)

Published 14 Jun 2019 in cs.NI, cs.LG, and stat.ML

Abstract: For enabling automatic deployment and management of cellular networks, the concept of self-organizing network (SON) was introduced. SON capabilities can enhance network performance, improve service quality, and reduce operational and capital expenditure (OPEX/CAPEX). As an important component in SON, self-healing is defined as a network paradigm where the faults of target networks are mitigated or recovered by automatically triggering a series of actions such as detection, diagnosis and compensation. Data-driven machine learning has been recognized as a powerful tool to bring intelligence into network and to realize self-healing. However, there are major challenges for practical applications of machine learning techniques for self-healing. In this article, we first classify these challenges into five categories: 1) data imbalance, 2) data insufficiency, 3) cost insensitivity, 4) non-real-time response, and 5) multi-source data fusion. Then we provide potential technical solutions to address these challenges. Furthermore, a case study of cost-sensitive fault detection with imbalanced data is provided to illustrate the feasibility and effectiveness of the suggested solutions.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube