Emergent Mind

Abstract

For enabling automatic deployment and management of cellular networks, the concept of self-organizing network (SON) was introduced. SON capabilities can enhance network performance, improve service quality, and reduce operational and capital expenditure (OPEX/CAPEX). As an important component in SON, self-healing is defined as a network paradigm where the faults of target networks are mitigated or recovered by automatically triggering a series of actions such as detection, diagnosis and compensation. Data-driven machine learning has been recognized as a powerful tool to bring intelligence into network and to realize self-healing. However, there are major challenges for practical applications of machine learning techniques for self-healing. In this article, we first classify these challenges into five categories: 1) data imbalance, 2) data insufficiency, 3) cost insensitivity, 4) non-real-time response, and 5) multi-source data fusion. Then we provide potential technical solutions to address these challenges. Furthermore, a case study of cost-sensitive fault detection with imbalanced data is provided to illustrate the feasibility and effectiveness of the suggested solutions.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.