Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An analysis of community structure in Brazilian political topic-based Twitter networks (1906.06315v1)

Published 14 Jun 2019 in cs.SI and cs.CY

Abstract: Online social networks such as Twitter are important platforms for spreading public opinion on a variety of subjects. The classification of users through the analysis of their posts on Twitter according to their opinion sharing can help marketing ads and political campaigns to focus on specific user groups. Community detection-based techniques are specially useful to classify Twitter users, as they do not require rule-based methods or labeled data to perform the clustering task. In this paper, we constructed networks using data related to political discussions in Brazil extracted from Twitter. We show that (i) these networks follow the power-law distribution, indicating that a few popular users are responsible for most of the "mentions" and "retweets"; (ii) the most popular tweets are viral and spread across the communities whereas most of the remaining tweets are trapped in the communities where they originated; and (iii) words associated with positive sentiments are predominant in network communities related to the Brazilian presidential elections and appear in viral tweets.

Summary

We haven't generated a summary for this paper yet.