Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastic Proximal AUC Maximization (1906.06053v1)

Published 14 Jun 2019 in cs.LG and stat.ML

Abstract: In this paper we consider the problem of maximizing the Area under the ROC curve (AUC) which is a widely used performance metric in imbalanced classification and anomaly detection. Due to the pairwise nonlinearity of the objective function, classical SGD algorithms do not apply to the task of AUC maximization. We propose a novel stochastic proximal algorithm for AUC maximization which is scalable to large scale streaming data. Our algorithm can accommodate general penalty terms and is easy to implement with favorable $O(d)$ space and per-iteration time complexities. We establish a high-probability convergence rate $O(1/\sqrt{T})$ for the general convex setting, and improve it to a fast convergence rate $O(1/T)$ for the cases of strongly convex regularizers and no regularization term (without strong convexity). Our proof does not need the uniform boundedness assumption on the loss function or the iterates which is more fidelity to the practice. Finally, we perform extensive experiments over various benchmark data sets from real-world application domains which show the superior performance of our algorithm over the existing AUC maximization algorithms.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)