Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Low-light Image Enhancement Algorithm Based on Retinex and Generative Adversarial Network (1906.06027v1)

Published 14 Jun 2019 in cs.CV and eess.IV

Abstract: Low-light image enhancement is generally regarded as a challenging task in image processing, especially for the complex visual tasks at night or weakly illuminated. In order to reduce the blurs or noises on the low-light images, a large number of papers have contributed to applying different technologies. Regretfully, most of them had served little purposes in coping with the extremely poor illumination parts of images or test in practice. In this work, the authors propose a novel approach for processing low-light images based on the Retinex theory and generative adversarial network (GAN), which is composed of the decomposition part for splitting the image into illumination image and reflected image, and the enhancement part for generating high-quality image. Such a discriminative network is expected to make the generated image clearer. Couples of experiments have been implemented under the circumstance of different lighting strength on the basis of Converted See-In-the-Dark (CSID) datasets, and the satisfactory results have been achieved with exceeding expectation that much encourages the authors. In a word, the proposed GAN-based network and employed Retinex theory in this work have proven to be effective in dealing with the low-light image enhancement problems, which will benefit the image processing with no doubt.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.