Papers
Topics
Authors
Recent
2000 character limit reached

A Partitioned Finite Element Method for power-preserving discretization of open systems of conservation laws (1906.05965v1)

Published 14 Jun 2019 in math.NA, cs.NA, and math.DS

Abstract: This paper presents a structure-preserving spatial discretization method for distributed parameter port-Hamiltonian systems. The class of considered systems are hyperbolic systems of two conservation laws in arbitrary spatial dimension and geometries. For these systems, a partioned finite element method is derived, based on the integration by parts of one of the two conservation laws written in weak form. The nonlinear 1D Shallow Water Equation (SWE) is first considered as a motivation example. Then the method is investigated on the example of the nonlinear 2D SWE. Complete derivation of the reduced finite-dimensional port-Hamiltonian system is provided and numerical experiments are performed. Extensions to curvilinear (polar) coordinate systems, space-varying coefficients and higher-order port-Hamiltonian systems (Euler-Bernoulli beam equation) are provided.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.