Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Layered SGD: A Decentralized and Synchronous SGD Algorithm for Scalable Deep Neural Network Training (1906.05936v1)

Published 13 Jun 2019 in cs.LG, cs.DC, and stat.ML

Abstract: Stochastic Gradient Descent (SGD) is the most popular algorithm for training deep neural networks (DNNs). As larger networks and datasets cause longer training times, training on distributed systems is common and distributed SGD variants, mainly asynchronous and synchronous SGD, are widely used. Asynchronous SGD is communication efficient but suffers from accuracy degradation due to delayed parameter updating. Synchronous SGD becomes communication intensive when the number of nodes increases regardless of its advantage. To address these issues, we introduce Layered SGD (LSGD), a new decentralized synchronous SGD algorithm. LSGD partitions computing resources into subgroups that each contain a communication layer (communicator) and a computation layer (worker). Each subgroup has centralized communication for parameter updates while communication between subgroups is handled by communicators. As a result, communication time is overlapped with I/O latency of workers. The efficiency of the algorithm is tested by training a deep network on the ImageNet classification task.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube