Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Focus on Neural Machine Translation for African Languages (1906.05685v2)

Published 11 Jun 2019 in cs.CL, cs.LG, and stat.ML

Abstract: African languages are numerous, complex and low-resourced. The datasets required for machine translation are difficult to discover, and existing research is hard to reproduce. Minimal attention has been given to machine translation for African languages so there is scant research regarding the problems that arise when using machine translation techniques. To begin addressing these problems, we trained models to translate English to five of the official South African languages (Afrikaans, isiZulu, Northern Sotho, Setswana, Xitsonga), making use of modern neural machine translation techniques. The results obtained show the promise of using neural machine translation techniques for African languages. By providing reproducible publicly-available data, code and results, this research aims to provide a starting point for other researchers in African machine translation to compare to and build upon.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.