Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Turing Kernelization Dichotomy for Structural Parameterizations of $\mathcal{F}$-Minor-Free Deletion (1906.05565v2)

Published 13 Jun 2019 in cs.DS and cs.CC

Abstract: For a fixed finite family of graphs $\mathcal{F}$, the $\mathcal{F}$-Minor-Free Deletion problem takes as input a graph $G$ and an integer $\ell$ and asks whether there exists a set $X \subseteq V(G)$ of size at most $\ell$ such that $G-X$ is $\mathcal{F}$-minor-free. For $\mathcal{F}={K_2}$ and $\mathcal{F}={K_3}$ this encodes Vertex Cover and Feedback Vertex Set respectively. When parameterized by the feedback vertex number of $G$ these two problems are known to admit a polynomial kernelization. Such a polynomial kernelization also exists for any $\mathcal{F}$ containing a planar graph but no forests. In this paper we show that $\mathcal{F}$-Minor-Free Deletion parameterized by the feedback vertex number is MK[2]-hard for $\mathcal{F} = {P_3}$. This rules out the existence of a polynomial kernel assuming $NP \subseteq coNP/poly$, and also gives evidence that the problem does not admit a polynomial Turing kernel. Our hardness result generalizes to any $\mathcal{F}$ not containing a $P_3$-subgraph-free graph, using as parameter the vertex-deletion distance to treewidth $mintw(\mathcal{F})$, where $mintw(\mathcal{F})$ denotes the minimum treewidth of the graphs in $\mathcal{F}$. For the other case, where $\mathcal{F}$ contains a $P_3$-subgraph-free graph, we present a polynomial Turing kernelization. Our results extend to $\mathcal{F}$-Subgraph-Free Deletion.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.