Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Imitation Learning of Neural Spatio-Temporal Point Processes (1906.05467v4)

Published 13 Jun 2019 in cs.LG, stat.AP, and stat.ML

Abstract: We present a novel Neural Embedding Spatio-Temporal (NEST) point process model for spatio-temporal discrete event data and develop an efficient imitation learning (a type of reinforcement learning) based approach for model fitting. Despite the rapid development of one-dimensional temporal point processes for discrete event data, the study of spatial-temporal aspects of such data is relatively scarce. Our model captures complex spatio-temporal dependence between discrete events by carefully design a mixture of heterogeneous Gaussian diffusion kernels, whose parameters are parameterized by neural networks. This new kernel is the key that our model can capture intricate spatial dependence patterns and yet still lead to interpretable results as we examine maps of Gaussian diffusion kernel parameters. The imitation learning model fitting for the NEST is more robust than the maximum likelihood estimate. It directly measures the divergence between the empirical distributions between the training data and the model-generated data. Moreover, our imitation learning-based approach enjoys computational efficiency due to the explicit characterization of the reward function related to the likelihood function; furthermore, the likelihood function under our model enjoys tractable expression due to Gaussian kernel parameterization. Experiments based on real data show our method's good performance relative to the state-of-the-art and the good interpretability of NEST's result.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.