Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Trading Location Data with Bounded Personalized Privacy Loss (1906.05457v3)

Published 13 Jun 2019 in cs.CR and cs.DB

Abstract: As personal data have been the new oil of the digital era, there is a growing trend perceiving personal data as a commodity. Although some people are willing to trade their personal data for money, they might still expect limited privacy loss, and the maximum tolerable privacy loss varies with each individual. In this paper, we propose a framework that enables individuals to trade their personal data with bounded personalized privacy loss, which raises technical challenges in the aspects of budget allocation and arbitrage-freeness. To deal with those challenges,we propose two arbitrage-free trading mechanisms with different advantages.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.