Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Lower Bounds for the Happy Coloring Problems (1906.05422v3)

Published 12 Jun 2019 in cs.DS

Abstract: In this paper, we study the Maximum Happy Vertices and the Maximum Happy Edges problems (MHV and MHE for short). Very recently, the problems attracted a lot of attention and were studied in Agrawal '17, Aravind et al. '16, Choudhari and Reddy '18, Misra and Reddy '17. Main focus of our work is lower bounds on the computational complexity of these problems. Established lower bounds can be divided into the following groups: NP-hardness of the above guarantee parameterization, kernelization lower bounds (answering questions of Misra and Reddy '17), exponential lower bounds under the Set Cover Conjecture and the Exponential Time Hypothesis, and inapproximability results. Moreover, we present an $\mathcal{O}*(\ellk)$ randomized algorithm for MHV and an $\mathcal{O}*(2k)$ algorithm for MHE, where $\ell$ is the number of colors used and $k$ is the number of required happy vertices or edges. These algorithms cannot be improved to subexponential taking proved lower bounds into account.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube