Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lower Bounds for the Happy Coloring Problems (1906.05422v3)

Published 12 Jun 2019 in cs.DS

Abstract: In this paper, we study the Maximum Happy Vertices and the Maximum Happy Edges problems (MHV and MHE for short). Very recently, the problems attracted a lot of attention and were studied in Agrawal '17, Aravind et al. '16, Choudhari and Reddy '18, Misra and Reddy '17. Main focus of our work is lower bounds on the computational complexity of these problems. Established lower bounds can be divided into the following groups: NP-hardness of the above guarantee parameterization, kernelization lower bounds (answering questions of Misra and Reddy '17), exponential lower bounds under the Set Cover Conjecture and the Exponential Time Hypothesis, and inapproximability results. Moreover, we present an $\mathcal{O}*(\ellk)$ randomized algorithm for MHV and an $\mathcal{O}*(2k)$ algorithm for MHE, where $\ell$ is the number of colors used and $k$ is the number of required happy vertices or edges. These algorithms cannot be improved to subexponential taking proved lower bounds into account.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.