Papers
Topics
Authors
Recent
2000 character limit reached

Analyzing the Limitations of Cross-lingual Word Embedding Mappings (1906.05407v1)

Published 12 Jun 2019 in cs.CL and cs.LG

Abstract: Recent research in cross-lingual word embeddings has almost exclusively focused on offline methods, which independently train word embeddings in different languages and map them to a shared space through linear transformations. While several authors have questioned the underlying isomorphism assumption, which states that word embeddings in different languages have approximately the same structure, it is not clear whether this is an inherent limitation of mapping approaches or a more general issue when learning cross-lingual embeddings. So as to answer this question, we experiment with parallel corpora, which allows us to compare offline mapping to an extension of skip-gram that jointly learns both embedding spaces. We observe that, under these ideal conditions, joint learning yields to more isomorphic embeddings, is less sensitive to hubness, and obtains stronger results in bilingual lexicon induction. We thus conclude that current mapping methods do have strong limitations, calling for further research to jointly learn cross-lingual embeddings with a weaker cross-lingual signal.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.