Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Kaskade: Graph Views for Efficient Graph Analytics (1906.05162v1)

Published 12 Jun 2019 in cs.DB

Abstract: Graphs are an increasingly popular way to model real-world entities and relationships between them, ranging from social networks to data lineage graphs and biological datasets. Queries over these large graphs often involve expensive subgraph traversals and complex analytical computations. These real-world graphs are often substantially more structured than a generic vertex-and-edge model would suggest, but this insight has remained mostly unexplored by existing graph engines for graph query optimization purposes. Therefore, in this work, we focus on leveraging structural properties of graphs and queries to automatically derive materialized graph views that can dramatically speed up query evaluation. We present KASKADE, the first graph query optimization framework to exploit materialized graph views for query optimization purposes. KASKADE employs a novel constraint-based view enumeration technique that mines constraints from query workloads and graph schemas, and injects them during view enumeration to significantly reduce the search space of views to be considered. Moreover, it introduces a graph view size estimator to pick the most beneficial views to materialize given a query set and to select the best query evaluation plan given a set of materialized views. We evaluate its performance over real-world graphs, including the provenance graph that we maintain at Microsoft to enable auditing, service analytics, and advanced system optimizations. Our results show that KASKADE substantially reduces the effective graph size and yields significant performance speedups (up to 50X), in some cases making otherwise intractable queries possible.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.