Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Regret Minimization for Reinforcement Learning by Evaluating the Optimal Bias Function (1906.05110v3)

Published 12 Jun 2019 in cs.LG and stat.ML

Abstract: We present an algorithm based on the \emph{Optimism in the Face of Uncertainty} (OFU) principle which is able to learn Reinforcement Learning (RL) modeled by Markov decision process (MDP) with finite state-action space efficiently. By evaluating the state-pair difference of the optimal bias function $h{*}$, the proposed algorithm achieves a regret bound of $\tilde{O}(\sqrt{SAHT})$\footnote{The symbol $\tilde{O}$ means $O$ with log factors ignored. } for MDP with $S$ states and $A$ actions, in the case that an upper bound $H$ on the span of $h{*}$, i.e., $sp(h{*})$ is known. This result outperforms the best previous regret bounds $\tilde{O}(S\sqrt{AHT}) $\citep{fruit2019improved} by a factor of $\sqrt{S}$. Furthermore, this regret bound matches the lower bound of $\Omega(\sqrt{SAHT}) $\citep{jaksch2010near} up to a logarithmic factor. As a consequence, we show that there is a near optimal regret bound of $\tilde{O}(\sqrt{SADT})$ for MDPs with a finite diameter $D$ compared to the lower bound of $\Omega(\sqrt{SADT}) $\citep{jaksch2010near}.

Citations (70)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.