Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Broadcasts on Paths and Cycles (1906.05089v2)

Published 12 Jun 2019 in cs.DM and math.CO

Abstract: A broadcast on a graph $G=(V,E)$ is a function $f: V\longrightarrow {0,\ldots,\operatorname{diam}(G)}$ such that $f(v)\leq e_G(v)$ for every vertex $v\in V$, where$\operatorname{diam}(G)$ denotes the diameter of $G$ and $e_G(v)$ the eccentricity of $v$ in $G$. The cost of such a broadcast is then the value $\sum_{v\in V}f(v)$.Various types of broadcast functions on graphs have been considered in the literature, in relation with domination, irredundence, independenceor packing, leading to the introduction of several broadcast numbers on graphs.In this paper, we determine these broadcast numbers for all paths and cycles, thus answering a questionraised in [D.~Ahmadi, G.H.~Fricke, C.~Schroeder, S.T.~Hedetniemi and R.C.~Laskar, Broadcast irredundance in graphs. {\it Congr. Numer.} 224 (2015), 17--31].

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.