Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Bayesian Approach to In-Game Win Probability in Soccer (1906.05029v2)

Published 12 Jun 2019 in cs.LG and stat.ML

Abstract: In-game win probability models, which provide a sports team's likelihood of winning at each point in a game based on historical observations, are becoming increasingly popular. In baseball, basketball and American football, they have become important tools to enhance fan experience, to evaluate in-game decision-making, and to inform coaching decisions. While equally relevant in soccer, the adoption of these models is held back by technical challenges arising from the low-scoring nature of the sport. In this paper, we introduce an in-game win probability model for soccer that addresses the shortcomings of existing models. First, we demonstrate that in-game win probability models for other sports struggle to provide accurate estimates for soccer, especially towards the end of a game. Second, we introduce a novel Bayesian statistical framework that estimates running win, tie and loss probabilities by leveraging a set of contextual game state features. An empirical evaluation on eight seasons of data for the top-five soccer leagues demonstrates that our framework provides well-calibrated probabilities. Furthermore, two use cases show its ability to enhance fan experience and to evaluate performance in crucial game situations.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube