Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural Variational Inference For Estimating Uncertainty in Knowledge Graph Embeddings (1906.04985v2)

Published 12 Jun 2019 in cs.LG, cs.AI, cs.SC, and stat.ML

Abstract: Recent advances in Neural Variational Inference allowed for a renaissance in latent variable models in a variety of domains involving high-dimensional data. While traditional variational methods derive an analytical approximation for the intractable distribution over the latent variables, here we construct an inference network conditioned on the symbolic representation of entities and relation types in the Knowledge Graph, to provide the variational distributions. The new framework results in a highly-scalable method. Under a Bernoulli sampling framework, we provide an alternative justification for commonly used techniques in large-scale stochastic variational inference, which drastically reduce training time at a cost of an additional approximation to the variational lower bound. We introduce two models from this highly scalable probabilistic framework, namely the Latent Information and Latent Fact models, for reasoning over knowledge graph-based representations. Our Latent Information and Latent Fact models improve upon baseline performance under certain conditions. We use the learnt embedding variance to estimate predictive uncertainty during link prediction, and discuss the quality of these learnt uncertainty estimates. Our source code and datasets are publicly available online at https://github.com/alexanderimanicowenrivers/Neural-Variational-Knowledge-Graphs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.