Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network (1906.04684v1)
Abstract: Inter-sentence relation extraction deals with a number of complex semantic relationships in documents, which require local, non-local, syntactic and semantic dependencies. Existing methods do not fully exploit such dependencies. We present a novel inter-sentence relation extraction model that builds a labelled edge graph convolutional neural network model on a document-level graph. The graph is constructed using various inter- and intra-sentence dependencies to capture local and non-local dependency information. In order to predict the relation of an entity pair, we utilise multi-instance learning with bi-affine pairwise scoring. Experimental results show that our model achieves comparable performance to the state-of-the-art neural models on two biochemistry datasets. Our analysis shows that all the types in the graph are effective for inter-sentence relation extraction.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.