Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Hierarchical multiscale finite element method for multi-continuum media (1906.04635v1)

Published 11 Jun 2019 in math.NA and cs.NA

Abstract: Simulation in media with multiple continua where each continuum interacts with every other is often challenging due to multiple scales and high contrast. One needs some types of model reduction. One of the approaches is multi-continuum technique, where every process in each continuum is modeled separately and an interaction term is added. Direct numerical simulation in multi scale media is usually not practicable. For this reason, one constructs the corresponding homogenized equations. The paper develops a hierarchical approach for solving cell problems at a dense network of macroscopic points with an essentially optimal computation cost. The method employs the fact that neighboring representative volume elements (RVEs) share similar features; and effective properties of the neighboring RVEs are close to each other. The hierarchical approach reduces computation cost by using different levels of resolution for cell problems at different macroscopic points. The method requires a hierarchy of macroscopic grid points and a corresponding nested approximation spaces with different levels of resolution. Each level of macroscopic points is assigned to an approximation finite element (FE) space which is used to solve the cell problems at the macroscopic points in that level. We prove rigorously that this hierarchical method achieves the same level of accuracy as that of the full solve where cell problems at every macroscopic point are solved using the FE spaces with the highest level of resolution, but at the essentially optimal computation cost. Numerical implementation that computes effective permeabilities of a two scale multicontinuum system via the numerical solutions of the cell problems supports the analytical results. Finally, we prove the homogenization convergence for our multiscale multi-continuum system.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.