Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Study of Compressed Randomized UTV Decompositions for Low-Rank Matrix Approximations in Data Science (1906.04572v1)

Published 8 Jun 2019 in cs.DS, cs.NA, and math.NA

Abstract: In this work, a novel rank-revealing matrix decomposition algorithm termed Compressed Randomized UTV (CoR-UTV) decomposition along with a CoR-UTV variant aided by the power method technique is proposed. CoR-UTV computes an approximation to a low-rank input matrix by making use of random sampling schemes. Given a large and dense matrix of size $m\times n$ with numerical rank $k$, where $k \ll \text{min} {m,n}$, CoR-UTV requires a few passes over the data, and runs in $O(mnk)$ floating-point operations. Furthermore, CoR-UTV can exploit modern computational platforms and can be optimized for maximum efficiency. CoR-UTV is also applied for solving robust principal component analysis problems. Simulations show that CoR-UTV outperform existing approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.