Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using synthetic networks for parameter tuning in community detection (1906.04555v2)

Published 2 Jun 2019 in cs.SI and physics.soc-ph

Abstract: Community detection is one of the most important and challenging problems in network analysis. However, real-world networks may have very different structural properties and communities of various nature. As a result, it is hard (or even impossible) to develop one algorithm suitable for all datasets. A standard machine learning tool is to consider a parametric algorithm and choose its parameters based on the dataset at hand. However, this approach is not applicable to community detection since usually no labeled data is available for such parameter tuning. In this paper, we propose a simple and effective procedure allowing to tune hyperparameters of any given community detection algorithm without requiring any labeled data. The core idea is to generate a synthetic network with properties similar to a given real-world one, but with known communities. It turns out that tuning parameters on such synthetic graph also improves the quality for a given real-world network. To illustrate the effectiveness of the proposed algorithm, we show significant improvements obtained for several well-known parametric community detection algorithms on a variety of synthetic and real-world datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.