Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Continuous Time Analysis of Momentum Methods (1906.04285v2)

Published 10 Jun 2019 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: Gradient descent-based optimization methods underpin the parameter training of neural networks, and hence comprise a significant component in the impressive test results found in a number of applications. Introducing stochasticity is key to their success in practical problems, and there is some understanding of the role of stochastic gradient descent in this context. Momentum modifications of gradient descent such as Polyak's Heavy Ball method (HB) and Nesterov's method of accelerated gradients (NAG), are also widely adopted. In this work our focus is on understanding the role of momentum in the training of neural networks, concentrating on the common situation in which the momentum contribution is fixed at each step of the algorithm. To expose the ideas simply we work in the deterministic setting. Our approach is to derive continuous time approximations of the discrete algorithms; these continuous time approximations provide insights into the mechanisms at play within the discrete algorithms. We prove three such approximations. Firstly we show that standard implementations of fixed momentum methods approximate a time-rescaled gradient descent flow, asymptotically as the learning rate shrinks to zero; this result does not distinguish momentum methods from pure gradient descent, in the limit of vanishing learning rate. We then proceed to prove two results aimed at understanding the observed practical advantages of fixed momentum methods over gradient descent. We achieve this by proving approximations to continuous time limits in which the small but fixed learning rate appears as a parameter. Furthermore in a third result we show that the momentum methods admit an exponentially attractive invariant manifold on which the dynamics reduces, approximately, to a gradient flow with respect to a modified loss function.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.