Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Demand Query Model for Bipartite Matching (1906.04213v1)

Published 10 Jun 2019 in cs.CC, cs.DS, and cs.GT

Abstract: We introduce a `concrete complexity' model for studying algorithms for matching in bipartite graphs. The model is based on the "demand query" model used for combinatorial auctions. Most (but not all) known algorithms for bipartite matching seem to be translatable into this model including exact, approximate, sequential, parallel, and online ones. A perfect matching in a bipartite graph can be found in this model with O(n{3/2}) demand queries (in a bipartite graph with n vertices on each side) and our main open problem is to either improve the upper bound or prove a lower bound. An improved upper bound could yield "normal" algorithms whose running time is better than the fastest ones known, while a lower bound would rule out a faster algorithm for bipartite matching from within a large class of algorithms. Our main result is a lower bound for finding an approximately maximum size matching in parallel: A deterministic algorithm that runs in n{o(1)} rounds, where each round can make at most n{1.99} demand queries cannot find a matching whose size is within n{o(1)} factor of the maximum. This is in contrast to randomized algorithms that can find a matching whose size is $99\%$ of the maximum in O(\log n) rounds, each making n demand queries.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)