Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Image Clustering Auto-Encoder Based on Predefined Evenly-Distributed Class Centroids and MMD Distance (1906.03905v2)

Published 10 Jun 2019 in cs.CV

Abstract: In this paper, we propose a novel, effective and simpler end-to-end image clustering auto-encoder algorithm: ICAE. The algorithm uses PEDCC (Predefined Evenly-Distributed Class Centroids) as the clustering centers, which ensures the inter-class distance of latent features is maximal, and adds data distribution constraint, data augmentation constraint, auto-encoder reconstruction constraint and Sobel smooth constraint to improve the clustering performance. Specifically, we perform one-to-one data augmentation to learn the more effective features. The data and the augmented data are simultaneously input into the autoencoder to obtain latent features and the augmented latent features whose similarity are constrained by an augmentation loss. Then, making use of the maximum mean discrepancy distance (MMD), we combine the latent features and augmented latent features to make their distribution close to the PEDCC distribution (uniform distribution between classes, Dirac distribution within the class) to further learn clustering-oriented features. At the same time, the MSE of the original input image and reconstructed image is used as reconstruction constraint, and the Sobel smooth loss to build generalization constraint to improve the generalization ability. Finally, extensive experiments on three common datasets MNIST, Fashion-MNIST, COIL20 are conducted. The experimental results show that the algorithm has achieved the best clustering results so far. In addition, we can use the predefined PEDCC class centers, and the decoder to clearly generate the samples of each class. The code can be downloaded at https://github.com/zyWang-Power/Clustering!

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.