Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalized Data Augmentation for Low-Resource Translation (1906.03785v1)

Published 10 Jun 2019 in cs.CL

Abstract: Translation to or from low-resource languages LRLs poses challenges for machine translation in terms of both adequacy and fluency. Data augmentation utilizing large amounts of monolingual data is regarded as an effective way to alleviate these problems. In this paper, we propose a general framework for data augmentation in low-resource machine translation that not only uses target-side monolingual data, but also pivots through a related high-resource language HRL. Specifically, we experiment with a two-step pivoting method to convert high-resource data to the LRL, making use of available resources to better approximate the true data distribution of the LRL. First, we inject LRL words into HRL sentences through an induced bilingual dictionary. Second, we further edit these modified sentences using a modified unsupervised machine translation framework. Extensive experiments on four low-resource datasets show that under extreme low-resource settings, our data augmentation techniques improve translation quality by up to~1.5 to~8 BLEU points compared to supervised back-translation baselines

Citations (111)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.