Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for Reinforcement Learning (1906.03735v1)

Published 9 Jun 2019 in cs.LG and stat.ML

Abstract: Off-policy evaluation (OPE) in both contextual bandits and reinforcement learning allows one to evaluate novel decision policies without needing to conduct exploration, which is often costly or otherwise infeasible. The problem's importance has attracted many proposed solutions, including importance sampling (IS), self-normalized IS (SNIS), and doubly robust (DR) estimates. DR and its variants ensure semiparametric local efficiency if Q-functions are well-specified, but if they are not they can be worse than both IS and SNIS. It also does not enjoy SNIS's inherent stability and boundedness. We propose new estimators for OPE based on empirical likelihood that are always more efficient than IS, SNIS, and DR and satisfy the same stability and boundedness properties as SNIS. On the way, we categorize various properties and classify existing estimators by them. Besides the theoretical guarantees, empirical studies suggest the new estimators provide advantages.

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.