Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

HGC: Hierarchical Group Convolution for Highly Efficient Neural Network (1906.03657v1)

Published 9 Jun 2019 in cs.CV

Abstract: Group convolution works well with many deep convolutional neural networks (CNNs) that can effectively compress the model by reducing the number of parameters and computational cost. Using this operation, feature maps of different group cannot communicate, which restricts their representation capability. To address this issue, in this work, we propose a novel operation named Hierarchical Group Convolution (HGC) for creating computationally efficient neural networks. Different from standard group convolution which blocks the inter-group information exchange and induces the severe performance degradation, HGC can hierarchically fuse the feature maps from each group and leverage the inter-group information effectively. Taking advantage of the proposed method, we introduce a family of compact networks called HGCNets. Compared to networks using standard group convolution, HGCNets have a huge improvement in accuracy at the same model size and complexity level. Extensive experimental results on the CIFAR dataset demonstrate that HGCNets obtain significant reduction of parameters and computational cost to achieve comparable performance over the prior CNN architectures designed for mobile devices such as MobileNet and ShuffleNet.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube