Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Toward Solving 2-TBSG Efficiently (1906.03553v1)

Published 9 Jun 2019 in cs.GT and math.OC

Abstract: 2-TBSG is a two-player game model which aims to find Nash equilibriums and is widely utilized in reinforced learning and AI. Inspired by the fact that the simplex method for solving the deterministic discounted Markov decision processes (MDPs) is strongly polynomial independent of the discounted factor, we are trying to answer an open problem whether there is a similar algorithm for 2-TBSG. We develop a simplex strategy iteration where one player updates its strategy with a simplex step while the other player finds an optimal counterstrategy in turn, and a modified simplex strategy iteration. Both of them belong to a class of geometrically converging algorithms. We establish the strongly polynomial property of these algorithms by considering a strategy combined from the current strategy and the equilibrium strategy. Moreover, we present a method to transform general 2-TBSGs into special 2-TBSGs where each state has exactly two actions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.