Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Proposed Guidelines for the Responsible Use of Explainable Machine Learning (1906.03533v3)

Published 8 Jun 2019 in stat.ML, cs.AI, and cs.LG

Abstract: Explainable ML enables human learning from ML, human appeal of automated model decisions, regulatory compliance, and security audits of ML models. Explainable ML (i.e. explainable artificial intelligence or XAI) has been implemented in numerous open source and commercial packages and explainable ML is also an important, mandatory, or embedded aspect of commercial predictive modeling in industries like financial services. However, like many technologies, explainable ML can be misused, particularly as a faulty safeguard for harmful black-boxes, e.g. fairwashing or scaffolding, and for other malevolent purposes like stealing models and sensitive training data. To promote best-practice discussions for this already in-flight technology, this short text presents internal definitions and a few examples before covering the proposed guidelines. This text concludes with a seemingly natural argument for the use of interpretable models and explanatory, debugging, and disparate impact testing methods in life- or mission-critical ML systems.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.