Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Defending Against Universal Attacks Through Selective Feature Regeneration (1906.03444v4)

Published 8 Jun 2019 in cs.CV

Abstract: Deep neural network (DNN) predictions have been shown to be vulnerable to carefully crafted adversarial perturbations. Specifically, image-agnostic (universal adversarial) perturbations added to any image can fool a target network into making erroneous predictions. Departing from existing defense strategies that work mostly in the image domain, we present a novel defense which operates in the DNN feature domain and effectively defends against such universal perturbations. Our approach identifies pre-trained convolutional features that are most vulnerable to adversarial noise and deploys trainable feature regeneration units which transform these DNN filter activations into resilient features that are robust to universal perturbations. Regenerating only the top 50% adversarially susceptible activations in at most 6 DNN layers and leaving all remaining DNN activations unchanged, we outperform existing defense strategies across different network architectures by more than 10% in restored accuracy. We show that without any additional modification, our defense trained on ImageNet with one type of universal attack examples effectively defends against other types of unseen universal attacks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.