Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Defending Against Universal Attacks Through Selective Feature Regeneration (1906.03444v4)

Published 8 Jun 2019 in cs.CV

Abstract: Deep neural network (DNN) predictions have been shown to be vulnerable to carefully crafted adversarial perturbations. Specifically, image-agnostic (universal adversarial) perturbations added to any image can fool a target network into making erroneous predictions. Departing from existing defense strategies that work mostly in the image domain, we present a novel defense which operates in the DNN feature domain and effectively defends against such universal perturbations. Our approach identifies pre-trained convolutional features that are most vulnerable to adversarial noise and deploys trainable feature regeneration units which transform these DNN filter activations into resilient features that are robust to universal perturbations. Regenerating only the top 50% adversarially susceptible activations in at most 6 DNN layers and leaving all remaining DNN activations unchanged, we outperform existing defense strategies across different network architectures by more than 10% in restored accuracy. We show that without any additional modification, our defense trained on ImageNet with one type of universal attack examples effectively defends against other types of unseen universal attacks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.