Papers
Topics
Authors
Recent
2000 character limit reached

Online Forecasting of Total-Variation-bounded Sequences (1906.03364v2)

Published 8 Jun 2019 in cs.LG and stat.ML

Abstract: We consider the problem of online forecasting of sequences of length $n$ with total-variation at most $C_n$ using observations contaminated by independent $\sigma$-subgaussian noise. We design an $O(n\log n)$-time algorithm that achieves a cumulative square error of $\tilde{O}(n{1/3}C_n{2/3}\sigma{4/3} + C_n2)$ with high probability.We also prove a lower bound that matches the upper bound in all parameters (up to a $\log(n)$ factor). To the best of our knowledge, this is the first \emph{polynomial-time} algorithm that achieves the optimal $O(n{1/3})$ rate in forecasting total variation bounded sequences and the first algorithm that \emph{adapts to unknown} $C_n$. Our proof techniques leverage the special localized structure of Haar wavelet basis and the adaptivity to unknown smoothness parameters in the classical wavelet smoothing [Donoho et al., 1998]. We also compare our model to the rich literature of dynamic regret minimization and nonstationary stochastic optimization, where our problem can be treated as a special case. We show that the workhorse in those settings --- online gradient descent and its variants with a fixed restarting schedule --- are instances of a class of \emph{linear forecasters} that require a suboptimal regret of $\tilde{\Omega}(\sqrt{n})$. This implies that the use of more adaptive algorithms is necessary to obtain the optimal rate.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.