Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unsupervised Feature Learning with K-means and An Ensemble of Deep Convolutional Neural Networks for Medical Image Classification (1906.03359v1)

Published 7 Jun 2019 in cs.CV

Abstract: Medical image analysis using supervised deep learning methods remains problematic because of the reliance of deep learning methods on large amounts of labelled training data. Although medical imaging data repositories continue to expand there has not been a commensurate increase in the amount of annotated data. Hence, we propose a new unsupervised feature learning method that learns feature representations to then differentiate dissimilar medical images using an ensemble of different convolutional neural networks (CNNs) and K-means clustering. It jointly learns feature representations and clustering assignments in an end-to-end fashion. We tested our approach on a public medical dataset and show its accuracy was better than state-of-the-art unsupervised feature learning methods and comparable to state-of-the-art supervised CNNs. Our findings suggest that our method could be used to tackle the issue of the large volume of unlabelled data in medical imaging repositories.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.