Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

PyramNet: Point Cloud Pyramid Attention Network and Graph Embedding Module for Classification and Segmentation (1906.03299v2)

Published 7 Jun 2019 in cs.CV, cs.GR, and cs.RO

Abstract: With the tide of artificial intelligence, we try to apply deep learning to understand 3D data. Point cloud is an important 3D data structure, which can accurately and directly reflect the real world. In this paper, we propose a simple and effective network, which is named PyramNet, suites for point cloud object classification and semantic segmentation in 3D scene. We design two new operators: Graph Embedding Module(GEM) and Pyramid Attention Network(PAN). Specifically, GEM projects point cloud onto the graph and practices the covariance matrix to explore the relationship between points, so as to improve the local feature expression ability of the model. PAN assigns some strong semantic features to each point to retain fine geometric features as much as possible. Furthermore, we provide extensive evaluation and analysis for the effectiveness of PyramNet. Empirically, we evaluate our model on ModelNet40, ShapeNet and S3DIS.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)