Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Latent feature disentanglement for 3D meshes (1906.03281v1)

Published 7 Jun 2019 in cs.LG and stat.ML

Abstract: Generative modeling of 3D shapes has become an important problem due to its relevance to many applications across Computer Vision, Graphics, and VR. In this paper we build upon recently introduced 3D mesh-convolutional Variational AutoEncoders which have shown great promise for learning rich representations of deformable 3D shapes. We introduce a supervised generative 3D mesh model that disentangles the latent shape representation into independent generative factors. Our extensive experimental analysis shows that learning an explicitly disentangled representation can both improve random shape generation as well as successfully address downstream tasks such as pose and shape transfer, shape-invariant temporal synchronization, and pose-invariant shape matching.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube