Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Robust Single Image Depth Estimation Neural Network Using Scene Understanding (1906.03279v1)

Published 7 Jun 2019 in cs.CV

Abstract: Single image depth estimation (SIDE) plays a crucial role in 3D computer vision. In this paper, we propose a two-stage robust SIDE framework that can perform blind SIDE for both indoor and outdoor scenes. At the first stage, the scene understanding module will categorize the RGB image into different depth-ranges. We introduce two different scene understanding modules based on scene classification and coarse depth estimation respectively. At the second stage, SIDE networks trained by the images of specific depth-range are applied to obtain an accurate depth map. In order to improve the accuracy, we further design a multi-task encoding-decoding SIDE network DS-SIDENet based on depthwise separable convolutions. DS-SIDENet is optimized to minimize both depth classification and depth regression losses. This improves the accuracy compared to a single-task SIDE network. Experimental results demonstrate that training DS-SIDENet on an individual dataset such as NYU achieves competitive performance to the state-of-art methods with much better efficiency. Ours proposed robust SIDE framework also shows good performance for the ScanNet indoor images and KITTI outdoor images simultaneously. It achieves the top performance compared to the Robust Vision Challenge (ROB) 2018 submissions.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.