Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evolving Losses for Unlabeled Video Representation Learning (1906.03248v1)

Published 7 Jun 2019 in cs.CV

Abstract: We present a new method to learn video representations from unlabeled data. Given large-scale unlabeled video data, the objective is to benefit from such data by learning a generic and transferable representation space that can be directly used for a new task such as zero/few-shot learning. We formulate our unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are also shared across different modalities via distillation. Further, we also introduce the concept of finding a better loss function to train such multi-task multi-modal representation space using an evolutionary algorithm; our method automatically searches over different combinations of loss functions capturing multiple (self-supervised) tasks and modalities. Our formulation allows for the distillation of audio, optical flow and temporal information into a single, RGB-based convolutional neural network. We also compare the effects of using additional unlabeled video data and evaluate our representation learning on standard public video datasets.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.