Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Current State of Research in Explaining Ensemble Performance Using Margins (1906.03123v1)

Published 7 Jun 2019 in stat.ML, cs.LG, and stat.CO

Abstract: Empirical evidence shows that ensembles, such as bagging, boosting, random and rotation forests, generally perform better in terms of their generalization error than individual classifiers. To explain this performance, Schapire et al. (1998) developed an upper bound on the generalization error of an ensemble based on the margins of the training data, from which it was concluded that larger margins should lead to lower generalization error, everything else being equal. Many other researchers have backed this assumption and presented tighter bounds on the generalization error based on either the margins or functions of the margins. For instance, Shen and Li (2010) provide evidence suggesting that the generalization error of a voting classifier might be reduced by increasing the mean and decreasing the variance of the margins. In this article we propose several techniques and empirically test whether the current state of research in explaining ensemble performance holds. We evaluate the proposed methods through experiments with real and simulated data sets.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.