Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Generative Framework for Zero-Shot Learning with Adversarial Domain Adaptation (1906.03038v3)

Published 7 Jun 2019 in cs.LG, cs.CV, and stat.ML

Abstract: We present a domain adaptation based generative framework for zero-shot learning. Our framework addresses the problem of domain shift between the seen and unseen class distributions in zero-shot learning and minimizes the shift by developing a generative model trained via adversarial domain adaptation. Our approach is based on end-to-end learning of the class distributions of seen classes and unseen classes. To enable the model to learn the class distributions of unseen classes, we parameterize these class distributions in terms of the class attribute information (which is available for both seen and unseen classes). This provides a very simple way to learn the class distribution of any unseen class, given only its class attribute information, and no labeled training data. Training this model with adversarial domain adaptation further provides robustness against the distribution mismatch between the data from seen and unseen classes. Our approach also provides a novel way for training neural net based classifiers to overcome the hubness problem in zero-shot learning. Through a comprehensive set of experiments, we show that our model yields superior accuracies as compared to various state-of-the-art zero shot learning models, on a variety of benchmark datasets. Code for the experiments is available at github.com/vkkhare/ZSL-ADA

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.