Papers
Topics
Authors
Recent
2000 character limit reached

Preference-based Interactive Multi-Document Summarisation (1906.02923v1)

Published 7 Jun 2019 in cs.CL

Abstract: Interactive NLP is a promising paradigm to close the gap between automatic NLP systems and the human upper bound. Preference-based interactive learning has been successfully applied, but the existing methods require several thousand interaction rounds even in simulations with perfect user feedback. In this paper, we study preference-based interactive summarisation. To reduce the number of interaction rounds, we propose the Active Preference-based ReInforcement Learning (APRIL) framework. APRIL uses Active Learning to query the user, Preference Learning to learn a summary ranking function from the preferences, and neural Reinforcement Learning to efficiently search for the (near-)optimal summary. Our results show that users can easily provide reliable preferences over summaries and that APRIL outperforms the state-of-the-art preference-based interactive method in both simulation and real-user experiments.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.