Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

New stability estimates for an unfitted finite element method for two-phase Stokes problem (1906.02779v2)

Published 6 Jun 2019 in math.NA and cs.NA

Abstract: The paper addresses stability and finite element analysis of the stationary two-phase Stokes problem with a piecewise constant viscosity coefficient experiencing a jump across the interface between two fluid phases. We first prove a priori estimates for the individual terms of the Cauchy stress tensor with stability constants independent of the viscosity coefficient. Next, this stability result is extended to the approximation of the two-phase Stokes problem by a finite element method. In the method considered, the interface between the phases does not respect the underlying triangulation, which put the finite element method into the class of unfitted discretizations. The finite element error estimates are proved with constants independent of viscosity. Numerical experiments supporting the theoretical results are provided.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.