Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Ranking and synchronization from pairwise measurements via SVD (1906.02746v3)

Published 6 Jun 2019 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Given a measurement graph $G= (V,E)$ and an unknown signal $r \in \mathbb{R}n$, we investigate algorithms for recovering $r$ from pairwise measurements of the form $r_i - r_j$; ${i,j} \in E$. This problem arises in a variety of applications, such as ranking teams in sports data and time synchronization of distributed networks. Framed in the context of ranking, the task is to recover the ranking of $n$ teams (induced by $r$) given a small subset of noisy pairwise rank offsets. We propose a simple SVD-based algorithmic pipeline for both the problem of time synchronization and ranking. We provide a detailed theoretical analysis in terms of robustness against both sampling sparsity and noise perturbations with outliers, using results from matrix perturbation and random matrix theory. Our theoretical findings are complemented by a detailed set of numerical experiments on both synthetic and real data, showcasing the competitiveness of our proposed algorithms with other state-of-the-art methods.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube