Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automated Classification of Seizures against Nonseizures: A Deep Learning Approach (1906.02745v1)

Published 5 Jun 2019 in eess.SP, cs.LG, and stat.ML

Abstract: In current clinical practice, electroencephalograms (EEG) are reviewed and analyzed by well-trained neurologists to provide supports for therapeutic decisions. The way of manual reviewing is labor-intensive and error prone. Automatic and accurate seizure/nonseizure classification methods are needed. One major problem is that the EEG signals for seizure state and nonseizure state exhibit considerable variations. In order to capture essential seizure features, this paper integrates an emerging deep learning model, the independently recurrent neural network (IndRNN), with a dense structure and an attention mechanism to exploit temporal and spatial discriminating features and overcome seizure variabilities. The dense structure is to ensure maximum information flow between layers. The attention mechanism is to capture spatial features. Evaluations are performed in cross-validation experiments over the noisy CHB-MIT data set. The obtained average sensitivity, specificity and precision of 88.80%, 88.60% and 88.69% are better than using the current state-of-the-art methods. In addition, we explore how the segment length affects the classification performance. Thirteen different segment lengths are assessed, showing that the classification performance varies over the segment lengths, and the maximal fluctuating margin is more than 4%. Thus, the segment length is an important factor influencing the classification performance.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube