Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Machine Learning and Visualization in Clinical Decision Support: Current State and Future Directions (1906.02664v1)

Published 6 Jun 2019 in cs.LG, cs.CY, and stat.ML

Abstract: Deep learning, an area of machine learning, is set to revolutionize patient care. But it is not yet part of standard of care, especially when it comes to individual patient care. In fact, it is unclear to what extent data-driven techniques are being used to support clinical decision making (CDS). Heretofore, there has not been a review of ways in which research in machine learning and other types of data-driven techniques can contribute effectively to clinical care and the types of support they can bring to clinicians. In this paper, we consider ways in which two data driven domains - machine learning and data visualizations - can contribute to the next generation of clinical decision support systems. We review the literature regarding the ways heuristic knowledge, machine learning, and visualization are - and can be - applied to three types of CDS. There has been substantial research into the use of predictive modeling for alerts, however current CDS systems are not utilizing these methods. Approaches that leverage interactive visualizations and machine-learning inferences to organize and review patient data are gaining popularity but are still at the prototype stage and are not yet in use. CDS systems that could benefit from prescriptive machine learning (e.g., treatment recommendations for specific patients) have not yet been developed. We discuss potential reasons for the lack of deployment of data-driven methods in CDS and directions for future research.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.