Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Optimal Control Framework for Online Job Scheduling with General Cost Functions (1906.02644v3)

Published 6 Jun 2019 in cs.SY, cs.GT, and eess.SY

Abstract: We consider the problem of online job scheduling on a single machine or multiple unrelated machines with general job/machine-dependent cost functions. In this model, each job $j$ has a processing requirement (length) $v_{ij}$ and arrives with a nonnegative nondecreasing cost function $g_{ij}(t)$ if it has been dispatched to machine $i$, and this information is revealed to the system upon arrival of job $j$ at time $r_j$. The goal is to dispatch the jobs to the machines in an online fashion and process them preemptively on the machines so as to minimize the generalized completion time $\sum_{j}g_{i(j)j}(C_j)$. Here $i(j)$ refers to the machine to which job $j$ is dispatched, and $C_j$ is the completion time of job $j$ on that machine. It is assumed that jobs cannot migrate between machines and that each machine can work on a single job at any time instance. In particular, we are interested in finding an online scheduling policy whose objective cost is competitive with respect to a slower optimal offline benchmark, i.e., the one that knows all the job specifications a priori and is slower than the online algorithm. We first show that for the case of a single machine and special cost functions $g_j(t)=w_jg(t)$, with nonnegative nondecreasing $g(t)$, the highest-density-first rule is optimal for the generalized fractional completion time. We then extend this result by giving a speed-augmented competitive algorithm for the general nondecreasing cost functions $g_j(t)$ by utilizing a novel optimal control framework. This approach provides a principled method for identifying dual variables in different settings of online job scheduling with general cost functions. Using this method, we also provide a speed-augmented competitive algorithm for multiple unrelated machines with convex functions $g_{ij}(t)$, where the competitive ratio depends on the curvature of cost functions $g_{ij}(t)$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.