Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Localizing Catastrophic Forgetting in Neural Networks (1906.02568v1)

Published 6 Jun 2019 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: Artificial neural networks (ANNs) suffer from catastrophic forgetting when trained on a sequence of tasks. While this phenomenon was studied in the past, there is only very limited recent research on this phenomenon. We propose a method for determining the contribution of individual parameters in an ANN to catastrophic forgetting. The method is used to analyze an ANNs response to three different continual learning scenarios.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)